A Finite Volume Element Method for a Nonlinear Parabolic Problem
نویسندگان
چکیده
We study a finite volume element discretization of a nonlinear parabolic equation in a convex polygonal domain. We show existence of the discrete solution and derive error estimates in L2– and H –norms. We also consider a linearized method and provide numerical results to illustrate our theoretical findings.
منابع مشابه
ACMAC’s PrePrint Repository A Finite Volume Element Method for a Nonlinear Parabolic Problem
We study a finite volume element discretization of a nonlinear parabolic equation in a convex polygonal domain. We show existence of the discrete solution and derive error estimates in L2– and H –norms. We also consider a linearized method and provide numerical results to illustrate our theoretical findings.
متن کاملA posteriori error estimate for finite volume approximations of nonlinear heat equations
In this contribution we derive a posteriori error estimate for finite volume approximations of nonlinear convection diffusion equations in the L∞(L1)-norm. The problem is discretized implicitly in time by the method of characteristics, and in space by piecewise constant finite volume methods. The analysis is based on a reformulation for finite volume methods. The derived a posteriori error esti...
متن کاملA New Stress Based Approach for Nonlinear Finite Element Analysis
This article demonstrates a new approach for nonlinear finite element analysis. The methodology is very suitable and gives very accurate results in linear as well as in nonlinear range of the material behavior. Proposed methodology can be regarded as stress based finite element analysis as it is required to define the stress distribution within the structural body with structural idealization a...
متن کاملConvergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations
In this paper, we propose and analyze a Control Volume Finite Elements (CVFE) scheme for solving possibly degenerated parabolic equations. This scheme does not require the introduction of the so-called Kirchhoff transform in its definition. We prove that the discrete solution obtained via the scheme remains in the physical range, and that the natural entropy of the problem decreases with time. ...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012